Weakening the Isolation Assumption of Tamper-Proof Hardware Tokens
نویسندگان
چکیده
Recent results have shown the usefulness of tamper-proof hardware tokens as a setup assumption for building UC-secure two-party computation protocols, thus providing broad security guarantees and allowing the use of such protocols as buildings blocks in the modular design of complex cryptography protocols. All these works have in common that they assume the tokens to be completely isolated from their creator, but this is a strong assumption. In this work we investigate the feasibility of cryptographic protocols in the setting where the isolation of the hardware token is weakened. We consider two cases: (1) the token can relay messages to its creator, or (2) the creator can send messages to the token after it is sent to the receiver. We provide a detailed characterization for both settings, presenting both impossibilities and information-theoretically secure solutions.
منابع مشابه
UC-Secure Multi-Session OT Using Tamper-Proof Hardware
In this paper, we show the first UC-secure multi-session OT protocol using tamper-proof hardware tokens. 1 The sender and the receiver exchange tokens only at the beginning. Then these tokens are reused in arbitrarily many sessions of OT. The proposed scheme is UC-secure against static adversaries if the DDH assumption holds and a unique signature scheme exists. There exist a unique signature s...
متن کاملDavid and Goliath Commitments: UC Computation for Asymmetric Parties Using Tamper-Proof Hardware
Designing secure protocols in the Universal Composability (UC) framework confers many advantages. In particular, it allows the protocols to be securely used as building blocks in more complex protocols, and assists in understanding their security properties. Unfortunately, most existing models in which universally composable computation is possible (for useful functionalities) require a trusted...
متن کاملUniversally Composable (Non-Interactive) Two-Party Computation from Untrusted Reusable Hardware Tokens
Universally composable protocols provide security even in highly complex environments like the Internet. Without setup assumptions, however, UC-secure realizations of cryptographic tasks are impossible. To achieve efficient protocols, practical setup assumptions are needed. Tamper-proof hardware tokens, e.g. smart cards and USB tokens, can be used for this purpose. Apart from the fact that they...
متن کاملUniversally Composable Secure Two and Multi-party Computation in the Corruptible Tamper-Proof Hardware Token Model
In this work we introduce the corruptible token model. This model generalizes the stateless tamper-proof token model introduced by Katz (EUROCRYPT ’07) and relaxes the trust assumption. Our improved model is motivated by the real-world practice of outsourcing hardware production to possibly untrusted manufacturers and allows tokens created by honest parties to be corrupted at the time of their ...
متن کاملUnconditional and Composable Security Using a Single Stateful Tamper-Proof Hardware Token
Cryptographic assumptions regarding tamper proof hardware tokens have gained increasing attention. Even if the tamper-proof hardware is issued by one of the parties, and hence not necessarily trusted by the other, many tasks become possible: Tamper proof hardware is sufficient for universally composable protocols, for information-theoretically secure protocols, and even allow to create software...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015